Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrine ; 84(2): 345-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400880

RESUMO

PURPOSE: Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS: Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS: By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS: SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.


Assuntos
Hipopituitarismo , Animais , Humanos , Feminino , Masculino , Camundongos , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Disgenesia Gonadal/genética , Proteínas de Transporte Vesicular/genética , Linhagem , Criança , Camundongos Knockout , Pré-Escolar , Hormônios Hipofisários/deficiência , Hormônios Hipofisários/genética
2.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580571

RESUMO

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Assuntos
Dissulfetos/química , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidases/química , Isomerases de Dissulfetos de Proteínas/química , Animais , Movimento Celular , Células Cultivadas , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Oxirredução , Superóxidos/metabolismo
3.
J Am Heart Assoc ; 7(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907654

RESUMO

BACKGROUND: NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS: Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.


Assuntos
Sinalização do Cálcio , Cardiopatias/enzimologia , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Calmodulina/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/fisiopatologia , NADPH Oxidase 5/genética , Oxirredução , Rhodnius , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...